Congruence 1: Transformations:

- 1. Draw and label the figure after a reflection across the line x=2.
- 2. Describe the term line segment in terms of points, lines, and planes.
- 3. How many degrees of clockwise rotation would it take for A to be carried onto D? (ABCDE is a regular pentagon.)

4. Use arrow notation to write a rule that will carry LUEK to L'U'E'K'.

Congruence 2: Triangle Congruence

5. In each pair, are the triangles congruent? If so, what criteria is shown?

6. Which transformation(s) would show $\Delta QTP \cong \Delta SPT$? Select all that apply.

horizontal translation along the length PR

| horizontal translation along the length of PT
| reflection over RM
| reflection over SP
| rotation around R

7. Figure 1 goes through rigid transformations to become Figure 2. What segment is congruent to CA?

Congruence 3: Parallel Lines and Triangles

- 8. Name a pair of corresponding angles.
- 9. Name a pair of alternate interior angles.
- 10. If $\angle 3 = 14x + 45$ and $\angle 5 = 7x + 30$, what is the value of x?
- 11. Complete the proof.

Given: $m // n$	Prove: $\angle 3 \cong \angle 6$
Statements	Reasons
1.	1.
2. ∠3 ≅ ∠7	2.
3. ∠7 ≅ ∠6	3.
4. ∠3 ≅ ∠6	4.

r	
Given: \overline{AE} bisects \overline{BD} ; $\overline{AB} \parallel \overline{ED}$	Prove: $\overline{AB}\cong \overline{ED}$
Statements	Reasons
1. \overline{AE} bisects \overline{BD} ; $\overline{AB} \parallel \overline{ED}$	1. Given
2. $\angle BCA \cong \angle DCE$	2.
3.	3. Def. of bisect
4. $\angle A \cong \angle E$	4.
5. $\triangle ACB \cong \triangle ECD$	5.
6. $\overline{AB} \cong \overline{ED}$	6.

Congruence 4: Quadrilaterals

13. Consider <u>rhombus</u> DCBA with diagonals intersecting at E.

$$\angle ABC =$$

14. ABCD is a parallelogram. If BE = 11x-15, and BD = 8x+12, find the length of DE.

15. RSTU is a parallelogram. Find the measure of the indicated angle.

