08-25-14 Warmup/Lesson (no journals on Mondays)

Consider the points $R(-4,5)$ and $Q(2,-3)$.

1. Plot the points.
2. What is the distance between these points? Use the distance formula and round your answer to the nearest thousandth if necessary.

$$
\begin{aligned}
& d=\sqrt{(\operatorname{diff} x)^{2}+\left(d \cdot f(y)^{2}\right.} \\
& d=\sqrt{(\delta)^{2}+(8)^{2}}
\end{aligned}
$$

3. What is the slope of $\overline{R Q}$? Show work.
5. What is the slope of a line parallel to $\overline{R Q}$? Explain. $\left(\frac{-4+2}{2}, \frac{5+-3}{2}\right)=\left(\frac{-2}{2}, \frac{2}{2}\right)$
parallel \rightarrow sane slope, so $-4 / 3$
6. What is the slope of a line perpendicular to $\overline{R Q}$? Explain.

$$
P(-1,1)_{m}
$$

Point-Slope Form of a line
(Algebra I)

If m is the slope of a line, and $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ is any point on that line, then:

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

is the equation of that line in point-slope form.
7. $\overleftrightarrow{E T}$ is the perpendicular bisector of $\overline{R Q}$. What is the equation for $\overleftrightarrow{E T}$ in point-slope form?

Slope of ${ }^{\prime} E T=3 / 4$ Pt $M(-1,1)$

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-1=\frac{3}{4}(x--1) \\
& y-1=\frac{3}{4}(x+1)
\end{aligned}
$$

8. Consider \triangle RME. Complete the statement: \triangle RYE \cong \qquad \triangle QM Cor.
