08-25-14 Warmup/Lesson (no journals on Mondays)

Consider the points R(-4, 5) and Q(2, -3).

- 1. Plot the points.
- What is the distance between these points? Use the distance formula and 2

2. What is the distance between these points: use the distance formula and
round your answer to the nearest thousandth if necessary.

$$d = \sqrt{(d_iff \times)^2 + (d_i)(f + y)^2}$$

$$d = \sqrt{(d_iff \times)^2 + (d_i)(f + y)^2}$$
3. What is the slope of \overline{RQ} ? Show work.

$$\int ope = \frac{10}{(M - 1)} + \frac{10}{(M + 1)$$

E

is the equation of that line in **point-slope form.**

 \overrightarrow{ET} is the perpendicular bisector of \overrightarrow{RQ} . What is the equation for \overrightarrow{ET} in point-slope form? 7.

Show of
$$ET = 3/4$$
 $Pf M(-1,1)$
 $y - y_1 = m(x - x_1)$
 $y - -3 = \frac{1}{3}(x - 2)$
 $y + 3 = \frac{1}{3}(x - 2)$