Centroids and Medians

In $\triangle Q R S, R X=48$ and $Q W=30$. Find each length.

1. $R W$ 32
2. $W X / 6$
3. $Q Z$

4. $W Z / 5$
Orthocenter and Altitudes, using algebra

Triangle $F G H$ has coordinates $F(-3,1), G(2,6)$, and $H(4,1)$.
5. Draw an altitude from G to $\overline{F H}$.

6. Graph the equation of a second altitude, which is . What vertex and side does it connect?
\qquad
7. Find the coordinates of the orthocenter.

Perpendicular Bisectors and Circumcenters

Use the figure for Exercises 8-11. $\overline{D G}, \overline{E G}$, and $\overline{F G}$ are perpeı $\triangle A B C$. Find each length.
10. $A F$ \qquad
9. $D B$ \qquad
11. $G B$ \qquad

11b: If three friends, André 3000, Beyoncé, and Common want to meet somewhere for lunch that's the same distance from each of th homes (points A, B, and C), where should they meet?
Af print G. The circumenter is

Angle Bisectors and Incenters

$$
113
$$

vertices.

Use the figure for Exercises 12-15. $\overline{H K}$ and $\overline{J K}$ are angle bisectors of $\triangle H I J$. Find each measure.
12. the distance from K to \bar{J}

13. $\mathrm{m} \angle H J K ~ 45^{\circ}$
14. $\mathrm{m} \angle J H K$ \qquad
15. $\mathrm{m} \angle H J I$ \qquad

Pythagorean Theorem/Inequalities

Do the following lengths make a triangle? If so, classify it by its angle mead
16. 12, 32, 31 Yes, acute
17.9, 40, 41 Yesjright
18. Find the length of x. Give your answer in simplest radical form.

$$
x=6 \sqrt{13}
$$

19. ///ERROR ANALYSIS /// Below are two solutions for finding x. Which is incorrect? Explain the error.

$$
\left\{\begin{array}{l}
(x+3)^{2}+4^{2}=13^{2} \\
x^{2}+9+16=169 \\
x^{2}=144 \\
x=12
\end{array}\right.
$$

Triangle Midsegments

へ~… - Find n.

21. GC is a midsegment. Find the length of GC and the angle measures $<\mathrm{GCD}$ and $<\mathrm{GC}^{\text {- }}$

Hinge Theorem

22. Find a range of values for z.

$2<\geqslant<8$

23. Isosceles and Equilateral Triangles

HL shortcut and CPCTC
24. Given: E is the midpoint of AD and BC .

Prove: $\triangle \mathrm{ABE}$ 林 $\triangle \mathrm{DCE}$

Given: $\overline{W X} \cong \overline{X Y} \cong \overline{Y Z} \cong \overline{Z W}$
25. Prove: $\angle W \cong \angle Y$

1. $\begin{aligned} & \frac{\text { Statements }}{\overline{W X} \equiv \overline{X Y} \cong} \frac{\text { Reasons }}{\overline{Y Z} \equiv Z W}\end{aligned}$
2. $\overline{x Z} \cong \overline{X Z}$
3. Reflexive Property.

$$
\begin{array}{ll}
\text { 3. } \Delta W X Z \cong \Delta Z X & \text { 3. SSS } \\
\text { 4. } \angle W \cong \angle Y & \text { 4.CPCTC. }
\end{array}
$$

