Use the cube figure for problems 1-3.

1. Identify a pair of parallel
segments. \qquad
2. Identify a segment $\overline{\mp H}$ perpendicular to AE. EH
3. Identify a plane parallel to
\qquad
4. True or false: Skew lines are on the same plane. false "aske
5. How many pairs of corresponding angles are formed by two lines and a transversal?
4 - 8 angles $\ldots 4$ pairs
Use the figure for problems 6-8.

6. What type of angle pair are $\angle 6$ and $\angle 3$?

7. Which line is the transversal?

8. $\angle 4$ and $\angle 2$ are corresponding angles. Are they congruent? Why or why not?

Use the figure for problems 9-15. $\angle 1=45^{\circ}$.

Refer to the diagram for 17-18.

18. If $\angle 4=(3 x)^{\circ}$ and $\angle 5=(2 x+15)^{\circ}$, what value of x would prove that $r \| \mathrm{s}$? $\quad x=33$
$3 x+2 x+15=180^{\circ}$ \& Caution! $\left.* *\right) ~$ $5 x+18=180^{\circ}$
-15 -15 In parallel lines,
$\frac{S x}{5}=\frac{165}{5} \quad \begin{aligned} & \text { Same side in to prior angles } \\ & \text { and up to } \\ & 180^{\circ} \text { (supplematari. }\end{aligned}$
$x=33$ equal to each other
19. Find the slope of the line through points:

$$
\begin{gathered}
x_{1} y_{1} x_{2} y_{2} \\
\mathrm{~J}(-4,3) \text { and } \mathrm{K}(6,4) \cdot 1 / 10 \\
\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4 \cdot 3}{6-4}=\frac{1}{6+4}=\frac{1}{10}
\end{gathered}
$$

20. Are these lines parallel, perpendicular, or neither?
Explain. \quad Same slope opposite slopes have

Dort set them

$$
1 / 10
$$

20. Are these lines parallel, perpendicular, or neither?
Explain. \quad Same Slope opposite slopes have

$$
\begin{aligned}
& 9 . \angle 2=\frac{135}{45} \\
& 10 . \angle 3=\frac{15}{135} \\
& 11 . \angle 4=\frac{135}{12 . \angle 5=135}
\end{aligned}
$$

$13 . \angle 6=\frac{135}{45}$
$14 . \angle 7=\frac{135}{}$
$15 . \angle 8=$
no relationship

$$
-3 / 2 \Rightarrow 2 / 3
$$

$$
\begin{aligned}
& \text { slopes }
\end{aligned}
$$

16. Find the measure of \angle EDE.

Study Guide:

- 25 questions, free response
- Covers sections:
- All of 3.1, 3.2, 3.3
- Parts of 3.5, 3.6: how to find slope (3.5), and parallel and perpendicular slopes from equations (3.6).
- Heavy emphasis on vocab: see sample test

3.1

- Given a 3-dimesional figure, be able to identify parallel segments or lines, perpendicular segments or lines, parallel planes (remember that three (and only three) points are needed to define a plane, and skew lines. See p 148: \#2-5.
- From a figure, identify the transversal line (the line that crosses two others) and the angle pairs created (corresponding, alternate interior, alternate exterior, same-side interior).
- REMEMBER: If the lines are not parallel, then these angle pairs are not the same measurement.
- From last unit: Vertical angles are always congruent; angles in a linear pair are supplementary.
- See pg. 148: \#6-9
3.2
- Know that when lines are parallel, corresponding angles (angles in "matching" positions) are congruent. - Pg 159: ex 1
- Given a pair of parallel lines and a transversal across them, be able to find (or "unlock") all the angle measurements formed.
- Sample test \#9-15
- P 159: \#13-19
- **Remember** in parallel lines, corresponding angles, alternate interior angles, and alternate exterior angles are pairs which are all congruent (meaning both angles measures equal each other). BUT, for sameside interior angles, the two angles aren't necessarily equal, but instead add-up to make 180°
- See p. 156 ex. 2B
- Set up and solve a multi-step equation from a figure with corresponding/alt.int/alt ext/same-side int. angles to find x, then plug x back in to find the actual angle measure.
- See p. 156: \#2 (bottom of page) answer: 60°
- P. 158: \#6-11
3.3
- If lines are parallel, then corresponding angles (or alt.int, or alt exterior) are congruent. The converse (or "backwards" argument) is also true: If corresponding angles (or alt. int, or alt. ext)are congruent, then two lines are parallel.
- Construct a reasoning argument to show that two lines are parallel given angle information:
- "Hashtag shape" proof from class: p. 164 ex 3
- Practice problem: p. 164: \#3 (bottom of page) Hint: prove that L and N are parallel, and that M and N are parallel. Then the conclusion becomes obvious.
3.5
- Given two points, find their slope: rise over run; rise refers to change in y-values, so subtract them; run refers to change in x -values so subtract them; then divide

$$
\text { - } m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \text { helpful hint: "yum yums on the picnic table" }
$$

3.6

- Given two equations, use algebra to solve for y to re-write equations in slope-intercept form to then analyze their slopes:
- If both equations slopes are the same, then the lines are parallel.
- If both equations slopes are opposite reciprocals (ex. one of them is $2 / 3$ and the other is $-3 / 2$) then the lines are perpendicular.
- If neither such relationship is present, then the lines are neither parallel nor perpendicular.

