Study Guide: Triangle Congruence - on sections 4.1-4.5 and 5.5
Classify triangles both by their side lengths and their angle measures.

1. Classify $\triangle A B D$ by its angle measures: \qquad
2. Classify $\triangle A B C$ by its side lengths: \qquad
Prove and use theorems about triangles, including angle sum, exterior angle, third angles.
3. The measure of the smallest angle of a right triangle is 27°. What is the measure of the remaining angle? \qquad
4. In \triangle POW, angle P measures $2 x$, angle 0 measures $3 x-15$, and angle W measures $4 x-30$. Find the actual measures of each angle.
5. Find the value of $<$ RST. \qquad 6. Find the measure of $<E$. \qquad

Define congruence in terms of identical and matching parts.
7. Complete the congruence statement: $\triangle \mathrm{DEF} \cong$ \qquad 8. $\triangle T U V \cong \triangle T W V$. Find UV. \qquad

Determine whether 3 given lengths will make a Δ Specify a range of values for the 3 rd side of a Δ given 2 lengths. 9. Three sides of a triangle measure $\mathrm{x}^{2}, 6 \mathrm{x}-1$, and 2 x . When $\mathrm{x}=3$, will the lengths form a triangle? \qquad
10. Two sides of a triangular frame measure 3.5 mm and 11.03 mm . What is the range of possible values for the third side? \qquad

Prove triangles congruent using the shortcuts SSS/SAS/ASA/AAS. Recognize that AAA and SSA do not work. 11 . Which of the 4 congruence shortcuts can be used to show that $\triangle \mathrm{MAH} \cong \triangle \mathrm{TAH}$? \qquad

12. Which of the 4 congruence shortcuts can be used to show these triangles below are congruent? \qquad

13. Complete the congruence statement:
\qquad

Develop basic geometric proofs using statements and reasons.
14. Fill in the blank for statements and reasons.

Given: J is the midpoint of $H F ; F G \cong H G$.
Prove: $\triangle \mathrm{FGJ} \cong \Delta \mathrm{HGJ}$

Statements
Reasons

1. J is the midpoint of HF
2. $\mathrm{HJ} \cong \mathrm{FJ}$
3. \qquad
4. JG $\cong \mathrm{JG}$
5. Def. of midpoint
6. \qquad
7. $\mathrm{FG} \cong \mathrm{HG}$
8. Given
9. $\Delta \mathrm{FGJ} \cong \Delta \mathrm{HGJ}$
10. \qquad

11.

> Given: $\angle Q \cong \angle T ; \overline{R X} \cong \overline{S X}$.
> Prove: $\triangle R X Q \cong \triangle S X T$.

Statements

1. \qquad
2. $\mathrm{RX} \cong \mathrm{SX}$
3. $<1 \cong<2$
4. \qquad

Reasons

1. \qquad
2.
3. \qquad
4. \qquad
5. Are these triangles congruent? Why or why not?

6. Are these triangles congruent? Why or why not?

