Good morning:

Have workbook hw out on desk during "Journal" in notes

1. An mechanical engineer has three metal beams measure $12 \mathrm{~m}, 10 \mathrm{~m}$, and 5 m . Can they fit together to make a triangular brace?
2. Another engineer's measurements have lengths of 4 m and 11 m that need to be fitted by a triangular hinge. What are all the possible values for the length of the third side?

Goals and Homework

- Goals
- Write a two-column geometry proof
- Use the transitive and reflexive properties
- Know which congruence "shortcuts" work, and which do not
- Homework
- Worksheet: \#1-17

Go over last night's homework

How many geometric "parts" are in a triangle?

Do we need to show that all six parts match for two shapes to be identical?

- There are $\underline{4}$ shortcuts that save us time and work.
- We will discover them in the lab.
- Instead of matching all six parts, you only need to match 3 parts. Saves half the work.

Why do the shortcuts work?

- Triangle Rigidity:

Force Applied
Force Applied

But first, proofs:

- Reasoning argument that starts with given information and arrives at conclusion.
- How to write a geometric proof:
- Two columns
- First Reason should always be "Given"
- Starting with provided information, list under Statements
- Final Statement should always be what was to be proven
- The final reason will differ from problem to problem

Important reasons to remember

- The transitive property
- For example
- $\angle A \cong \angle E$
- $\angle E \cong \angle F$
- So....

Important reasons to remember

- The reflexive property
- "Reflection"
- Used when two shapes/triangles share a side, so it is congruent to itself

Let's do an example

\author{

- Handout
}

The "included" angle or side

- Included = in the middle, belonging
- Draw triangle HTR. What angle is included between HT and TR?

For computer lab:

- http://mgeo.weebly.com/tcs
- Bring lab worksheet, pencil, ruler (optional)
- Make sure speakers are muted

