Constructing a Centroid

Task 1: Making the Midpoints

- 1. With a straight edge, draw a scalene triangle. Label the vertices T, R, and I.
- 2. Construct the midpoint of \overline{TR} . Call this point M.
- 3. Construct the midpoint of \overline{TI} . Call this point S.
- 4. Construct the midpoint of \overline{RI} . Call this point Q.
- 5. Using a centimeter ruler, measure and record the side lengths indicated in Table 1. Are M, S, and Q really midpoints? Support your answer with numbers.

Table 1: Triangle Measures:

TR	TI	RI	ТМ	MR	TS	SI	RQ	QI

Task 2: Making the Medians

- 6. Construct the three medians by creating segments \overline{RS} , \overline{IM} , and \overline{TQ} .
- 7. Call the point of intersection (called the centroid) C.
- 8. Measure and record the lengths indicated in Table 2. What numerical relationships do you notice in the three subgroups indicated in Table 2?

Table 2: Median Measures

RS	RC	\mathbf{CS}	IM	IC	\mathcal{CM}	TQ	TC	CQ

Task 3: Making Midsegments

9. Now let's make midsegments! Make segments \overline{MS} , \overline{SQ} , and \overline{MQ} . Find the 6 measures indicated in Table 3. What numerical relationships do you notice?

Table 3: Midsegment Measures

SM	IR	SQ	TR	MQ	TI

10. Now cut out ΔTRI and balance it on the tip of your finger. Where is the center of mass?

В Task 4: Practice Given that G is the centroid of the triangle and AD = 8, AG = 10, and CD = 18. Find: 14. AE =11. BD =Ε D G 12. AB =15. CG =8 10 13. EG =16.DG =F С

Use the given information and the diagram to find the value of x. It is given that G is the centroid.

18. EG = 2x - 8 EC = 3x + 3

Task 5: Coordinate Centroid Formula

As you saw during the balancing, the centroid can be considered the "middle" of a triangle. We made one on a blank plane, but how do you find the centroid on a coordinate grid? Let's find out.

- 20. How do you find the exact middle point between two points (x_1, y_1) and (x_2, y_2) on the coordinate plane?
- 21. How, then, would you expect to find the middle of *three* points, (x_1, y_1) , (x_2, y_2) , (x_3, y_3) ?

<u>Classwork/Homework:</u> p. 203-4: #1-2 (CO-C10b)