$\operatorname{CO-A3b}$ 

#### Practice Assessment

- Given is a regular octagon. After a counterclockwise rotation of 225° about point O, to what point will E be carried onto?
- 2. Draw all lines over which a reflection would carry the trapezoid onto itself.

3. Draw a quadrilateral with no lines of reflectional symmetry.

 $\operatorname{CO-A5b}$ 

- 4. Write the equation of the line of reflection.
- 5. Translate J'K'L'M' along vector <3,-1>.



B

E

C

D

Α

Ο

Η

G

# $\operatorname{CO-B6b}$

- 6. Which of the following transformations would carry  $\triangle ADC$  onto  $\triangle CBA$ ? Mark ALL that apply.
  - [ ] Reflection across  $\overline{AC}$
  - [ ] Translation along  $\overrightarrow{AC}$
  - [ ] Rotation clockwise around point A
  - [ ] Rotation clockwise around midpoint of  $\overline{AC}$



### CO-B7a

- 7. Given  $\triangle ADS \cong \triangle FOL$ .  $\angle A = 70^{\circ}, \angle O = 35^{\circ}$ . Find the measure of  $\angle L$ .
- 8. Given  $\triangle ABC \cong \triangle PSL$ , AB=15, SL=4x-4, PL = 10, and BC=12. Find the value of x and find the perimeter of  $\triangle PSL$ .



# SRT-B5a

13. Complete the proof using the statements and reasons provided. Not all can nor will be used. **GIVEN**:  $\overline{CD} \parallel \overline{EB}, \overline{DA} \cong \overline{BA}$ 

## **PROVE**: $\triangle ACD \cong \triangle AEB$

| Statements                                                                    | Reasons |     |
|-------------------------------------------------------------------------------|---------|-----|
| 1. $\overline{CD} \parallel \overline{EB}, \overline{DA} \cong \overline{BA}$ | 1.      | A H |
| 2.                                                                            | 2.      | E   |
| 3. $\angle DAC \cong \angle BAE$                                              | 3.      | HH- |
| 4. $\triangle ACD \cong \triangle AEB$                                        | 4.      | D   |
| Choices:                                                                      |         |     |

В

| SSS   | SAS                                                         | AAS | SSA                                 | Given              | Vertical Angles | Alternate Interior Angles           |
|-------|-------------------------------------------------------------|-----|-------------------------------------|--------------------|-----------------|-------------------------------------|
| Prove | $\angle C \cong \angle E \qquad \qquad \overline{CD} \cong$ |     | $\overline{CD} \cong \overline{EB}$ | Reflexive Property |                 | $\overline{CA} \cong \overline{EA}$ |