1. What is the minimum number of degrees of counterclockwise rotation about point O required to carry point E onto point C on the regular pentagon below?

2. Mark all lines of reflection which would carry the figure onto itself.

3. Draw a quadrilateral below with exactly 2 lines of reflectional symmetry.

CO-A4
4. (Always/Sometimes/Never) A translation along a vector will carry a figure onto itself.
5. (Always/Sometimes/Never) After a reflection, the points of a figure all move by the same amount.
6. $\triangle A B C$ [not shown] is rotated 30° clockwise about point B . Which points of the figure will be moved?

CO-B6a

7. Describe in detail a sequence of rigid motions that would carry $\triangle A B C$ onto $\triangle P W S$.
[Hint that won't be on the real test: be sure to give what line you reflect over, what vector you translate along, and what point you rotate around]

8. Give the vector, in vector notation,
that describes the translation shown here.

9. Write the equation of the line of reflection.

CO-A5a
Perform each transformation indicated. Label the points of the image using prime notation.
10. Reflect across $\mathrm{x}=1$

11. $(x, y) \rightarrow(x-5, y)$

GPE-B7a

12. Are the lines of these equations, when graphed, parallel, perpendicular, or neither? Explain your answer in words and use numbers to justify your reasoning.
$\{2 x-y=3$
$\left\{\begin{array}{l}2 x-2 y=2\end{array}\right.$

GPE-B5a
13. Find the perimeter, to the nearest hundredth, of $\triangle A B C$ where $A(-3,1) \quad B(1,2) \quad C(2,-1)$

