CO-A3a

Practice Assessment

1. What is the minimum number of degrees of counterclockwise rotation about point O required to carry point E onto point C on the regular pentagon below?

- 2. Mark all lines of reflection which would carry the figure onto itself.
- 3. Draw a quadrilateral below with exactly 2 lines of reflectional symmetry.

$\operatorname{CO-A4}$

- 4. (Always/Sometimes/Never) A translation along a vector will carry a figure onto itself.
- 5. (Always/Sometimes/Never) After a reflection, the points of a figure all move by the same amount.
- 6. $\triangle ABC$ [not shown] is rotated 30° clockwise about point B. Which points of the figure will be moved?

CO-B6a

7. Describe in detail a sequence of rigid motions that would carry ΔABC onto ΔPWS . [*Hint that won't be on the real test*: be sure to give what line you reflect over, what vector you translate along, and what point you rotate around]

CO-A2a

8. Give the vector, in vector notation, that describes the translation shown here.

CO-A5a

Perform each transformation indicated. Label the points of the image using prime notation. 10. Reflect across x=1 11. $(x, y) \rightarrow (x-5, y)$

GPE-B7a

12. Are the lines of these equations, when graphed, parallel, perpendicular, or neither? Explain your answer in words and use numbers to justify your reasoning.

 $\begin{cases} 2x - y = 3\\ 4x - 2y = 2 \end{cases}$

