1. Are the figures below similar? Explain why or why not and give numerical justification. 2. Given $\triangle ABC \sim \triangle SLE$. Find the values of f and g.

SRT-A3

In each pair below, justify why the triangles are similar. Then, complete the similarity statement.

SRT-B4a

6. In the figure below, $\overline{FG}\parallel\overline{CB}$. Find the length of the indicated side.

SRT-A1a

8. Suppose $\triangle ABC$ is first translated by $(x, y) \rightarrow (x + 2, y - 1)$ and is then dilated about the origin with a scale factor of 2 to create $\triangle A'B'C'$. Draw and label $\triangle A'B'C'$.

9. $\triangle ABC$ in the figure has an area of 2.5 units. What is the area of $\triangle A'B'C'$ after it has been translated and dilated as described in #8?

SRT-A1b

9. Determine both the center of dilation and the scale factor in the dilation below.

Center: Scale factor:

10. Suppose ΔDEF (not shown) is dilated about a point lying outside the figure to create $\Delta D'E'F'$. Rate each as True/False.

$$[] \Delta DEF \cong \Delta D'E'F'$$

 $[] \overline{DD'} \parallel \overline{EE'}$

 $[] \overline{DE} \parallel \overline{D'E'}$