1. Are the figures below similar? Explain why or why not and give numerical justification.
2. Given $\triangle A B C \sim \Delta S L E$. Find the values of f and g.

SRT-A3
In each pair below, justify why the triangles are similar. Then, complete the similarity statement.
3.

$\triangle B C D \sim \Delta$
5.

$\Delta L M N \sim \Delta$ \qquad
$\triangle H A T \sim \Delta_{-}$

SRT-B4a
6. In the figure below, $\overline{F \bar{G}} \| \overline{C B}$. Find the length of the indicated side.

7.Refer to the figure at right. Is $\overline{F E} \| \overline{Q R}$? Show the calculations that justify your answer.

56
SRT-A1a
8. Suppose $\triangle A B C$ is first translated by $(x, y) \rightarrow(x+2, y-1)$ and is then dilated about the origin with a scale factor of 2 to create $\Delta A^{\prime} B^{\prime} C^{\prime}$. Draw and label $\Delta A^{\prime} B^{\prime} C^{\prime}$.

9. $\triangle A B C$ in the figure has an area of 2.5 units. What is the area of $\Delta A^{\prime} B^{\prime} C^{\prime}$ after it has been translated and dilated as described in $\# 8$?

SRT-A1b
9. Determine both the center of dilation and the scale factor in the dilation below.

Center:
Scale factor:
10. Suppose $\triangle D E F$ (not shown) is dilated about a point lying outside the figure to create $\Delta D^{\prime} E^{\prime} F^{\prime}$. Rate each as True/False.

$$
\begin{aligned}
& {[\quad] \Delta D E F \cong \Delta D^{\prime} E^{\prime} F^{\prime}} \\
& {\left[\begin{array}{l}
] \overline{D D^{\prime}} \| \overline{E E^{\prime}} \\
{[\quad] \overline{D E} \| \overline{D^{\prime} E^{\prime}}}
\end{array} .\right.}
\end{aligned}
$$

