Angle-Angle Similarity Lab

Draw two non-congruent triangles with a protractor and a ruler so that each has a 40° and 60° angle.

1. Measure the third angle
2. Measure the lengths of the sides of the triangles
3. Compute the ratios of the lengths of the corresponding sides

Measurement	Triangle ABC	Triangle A'B'C'	Ratio
$\mathrm{m} \angle \mathrm{A}$	40°	40°	$\frac{m \angle A^{\prime}}{m \angle A}=$
$\mathrm{m} \angle \mathrm{B}$	60°	60°	$\frac{m \angle B^{\prime}}{m \angle B}=$
$\mathrm{m} \angle \mathrm{C}$			$\frac{m \angle C^{\prime}}{m \angle C}=$
AB			$\frac{A^{\prime} B^{\prime}}{A B}=$
BC		$\frac{B^{\prime} C^{\prime}}{B C}=$	
CA		$\frac{C^{\prime} A^{\prime}}{C A}=$	

Complete the Conjecture

If two angles of one triangle are congruent to two angles of another triangle then the triangles are \qquad _.

Side-Angle-Side Similarity Lab

Complete the triangles and measure the sides and angles.

Measurement	Triangle ABC	Triangle A'B'C'	Ratio
$\mathrm{m} \angle \mathrm{A}$			$\frac{m \angle A^{\prime}}{m \angle A}=$
$\mathrm{m} \angle \mathrm{B}$	100°	100°	$\frac{m \angle B^{\prime}}{m \angle B}=$
$\mathrm{m} \angle \mathrm{C}$			$\frac{m \angle C^{\prime}}{m \angle C}=$
AB	4 cm	8 cm	$\frac{A^{\prime} B^{\prime}}{A B}=2$
BC	3 cm	6 cm	$\frac{B^{\prime} C^{\prime}}{B C}=2$
CA			$\frac{C^{\prime} A^{\prime}}{C A}=$

Complete the Conjecture
If two sides of one triangle are proportional to two sides of another triangle and their included angles are congruent then the triangles are \qquad .

