Honors Geometry – 3rd Quarter Assessment Grades Name: ____

Most <u>recent</u> grade entered in PowerSchool. Two consecutive scores of 3 or higher required. Each standard is assessed at least twice. Re-taking an assessment requires proof of completed homework.

<u>Triangle Proportionality SRT-B4b</u>: I can prove that a line parallel to one side of a triangle divides the other two proportionally.

1 1	шу.					
	Date					
	Score					
Pythagorean Th	eorem and its C	onverse SRT-B4	4c: I can prove t	he Pythagorean	Theorem using	similarity.
	Date					
	Score					
Geometric Mean	n SRT-B5d: I ca	n use similarity	criteria and sim	ilarity <i>within</i> rig	triangles to c	lemonstrate
geometric mean.						
	Date					
	Score					
Special Right T	riangles SRT-C6	<u>ia</u> : I understand	that by similari	ty, side ratios in	right triangles	are properties of
the angles in the	e triangle, leadin	g to definitions	of trigonometric	ratios for acute	angles.	
	Date					
	Score					
Basics of Trigon	ometry SRT-C6	<u>ib</u> : I can develop	and use basic t	rigonometric rat	tios (including in	verses) to solve
right triangles.						
	Date					
	Score					
Sine and Cosine	of Complement	ary Angles SRT	<u>-C7a</u> : I can expl	ain and use the	relationship bet	ween the sine
and cosine of co	mplementary an	gles.				
	Date					
	Score					
Using Pythagore					ry and the Pyth	agorean
Theorem to solv		in applied prob	lems and math	modeling.		
	Date					
	Score					
Explaining Area	,		-	-		for the
circumference of		f a circle, volume	e of a cylinder, p	pyramid, and con	ne.	1
	Date					
	Score					
Coordinate Geor			-	· - /	-	-
rectangle; find t		line parallel or	perpendicular to	a given line thi	rough a given po	pint.
	Date					
	Score					
			-		0	des the segment
into a given rati	,	rdinates to comp	oute perimeters of	of polygons and	areas of triangle	es and rectangle.
	Date					
	Score					
Using Volume F	ormulas GMD-3	\underline{sa} : I can use vol	ume tormulas for	r cylinders, pyra	mids, cones, and	1 spheres to
solve problems.						
	Date					
	Score					

Modeling with Shapes MG1a: In applied contexts, I can use geometric shapes, their measures, and their properties to describe objects and develop and then solve problems associated with them.

0	1	1		
Date				
Score				

Density MG2a: In application problems, I can apply concepts of density based on area and volume in modeling situations.

Date							
Score							
Geometry in Design MG3a: I can apply geometric methods to solve design problems.							

Circle Similarity C-A1a: I can prove that all circles are similar.

Date Score

Date Score

Date Score

Score

Date			
Score			

Sectors and Arc Length C-B5a: I can derive using similarity the fact that the length of the arc intercepted by an angle is proportional to the radius; I can derive the formula for the area of a sector.

Score	Date			
	Score			

Circular Arcs CO-A1d: I know and can apply precise definitions of angles, circles based on point, line, and distance around a circular arc.

	Deole					
Circle Formulas	GMD-1b: I can	explain the form	nulas for the cir	cumference of a	circle, area of a	circle.

Date	
Score	

Radian Measure C-B5b: I can derive using similarity the fact that the length of the arc intercepted by an angle is proportional to the radius, and define the radian measure of the angle as the constant of proportionality.

Date			
Score			

Volume Formulas Again GMD-1c: I can explain the formulas for the volume of a cylinder, pyramid, and cone.

Using Volume Again GMD-3B: I can use volume formulas for cylinders, pyramids, cones, spheres

Date

Cross Sections GMD-4a: I can identify the shapes of two-dimensional cross-sections of 3D objects.

Date			
Score			

Revolutions GMD-4b: I can identify 3D objects generated by rotations of two-dimensional objects

Date Score

Modeling Review MG123: I can use two and three dimensional geometry to model real-life situations and solve related problems.

Date			
Score			