CO-C11a

Consider parallelogram WXYZ.

1. Find the measure of $\angle Z$

2. Find the length of \overline{ZY}

Consider parallelogram ABCD with diagonals intersecting at E.

3. If AC = 12x - 6, and AE = 2x + 9, find the length of EC.

CO-C11b

Consider rectangle ABCD for #4-5

4. If AR = 4x - 2 and BR = x + 7, find the length of AC.

D

- 5. Find the angle measures: ∠1 = ∠2 = ∠3 = $\angle 5 =$ ∠6 = ∠4 =
- 6. True or false (if false, write or show an explanation): All rectangles are squares.

7. Consider <u>rhombus</u> DCBA with diagonals intersecting at E. Find the angle measures =

$$\angle 1 = \angle 2 = \angle 3$$

 $\angle ABC =$ ∠4 =

Practice Assessment

3b+12

Х

с

CO-C10a

8. Two remote interior angles of a triangle measure 51° and 33°. What is the measure of the exterior angle associated with the remote interior angles?

9. If a base angle of an isosceles triangle measures 30°, is the triangle acute, right or obtuse? Justify your answer.

10. Find the value of x in the figure:

SRT-B5a11. Complete the proof.

Given: $\overline{AB} \parallel \overline{CD}$ and $\overline{BC} \parallel$ Prove: $\angle D \cong \angle B$	\overline{DA}
Statements	Reasons
1. $\overline{AB} \parallel \overline{CD}, \overline{BC} \parallel \overline{DA}$	1. Given
2. $\angle BAC \cong \angle DCA$	2.
3. $\overline{AC} \cong \overline{CA}$	3.
4. $\angle DAC \cong \angle BCA$	4.
5. $\triangle ACD \cong \triangle CAB$	5.
6. $\angle D \cong \angle B$	6.

Possible reasons: (may be used more than once)

Vertical ang	les	Congruent	Definition o	f bisect	CPCTC	Reflexive Property
HL	SAS	SSS	ASA	AAS	SSA	AAA