Proving Angle Relationships and Parallel Lines in the Euclidean Plane

Task A

Given: $m \| n$
Prove: $\angle 2 \cong \angle 7$
(Hint: remember that corresponding angles are congruent as an assumption, and that we have proven vertical angles are always congruent)

Theorem: If parallel lines are cut by a transversal, then

Task B:

Given: $m \| n$
Prove: $\angle 3+\angle 5=180^{\circ}$
(Hint: Corresponding angles of parallel lines are congruent as an assumption, and note $\angle 1+\angle 3=180^{\circ}$)

Theorem: If parallel lines are cut by a transversal, then

Task C:

Given: $\angle 5 \cong \angle 4$
Prove: $m \| n$
(Hint: We have proven that vertical angles are congruent, and have postulated that lines are parallel if and only if their corresponding angles are congruent.)

Theorem: If lines cut by a transversal form congruent alternate interior angles, then

Task D:

Given: $\angle 4+\angle 6=180^{\circ}$
Prove: $m \| n$
(Hint: Note that $\angle 2+\angle 4=180^{\circ}$, and have postulated that lines are parallel if and only if their corresponding angles are congruent.)

