1. than avo un una volume. 4 fish $\times 16 \frac{1 i^{3}}{\text { fish }}=640 i^{3}$ meed

Agatriut shape... How 'beat a prism or box? $^{\text {b hent }}$ b
Needs ce least 640 volume but less than 1000 in 3 .
1 Possible Answer

TIP: use trial and error until You find dimensions that work!

$$
V=12 \times 8 \times 8=768 \text { in }^{3}
$$

fits between 640 Hel 000 :
2. Tennis balls are sold in cylindrical cans with the balls stacked on atop the other. A tennis ball has a diameter of 6.7 cm . Find the approximate minimum volume, in cubic centimeters, of a can that can hold 4 such tennis balls.

$$
\begin{aligned}
V & =\pi r^{2} \cdot h \\
& =\pi(3.35)^{2} \cdot 26 \cdot 8 \\
V & =300.763 \pi \\
V & \approx 944.87 \mathrm{~cm}^{3}
\end{aligned}
$$

Diameter

$$
6.7 \mathrm{~cm} \rightarrow r=3.35 \mathrm{~cm}
$$

3. Drinks are being sold. Five hemispherical punch bowls with diameters 10 " contain the delicious beverage. The cups being used to distribute the drinks are cylinders 3 " wide and 5 " tall but are only partially filled, with $1 / 2^{\prime \prime}$ left empty to keep from spilling. $\$ 22$ have already been spent on cups and supplies, and each drink is being sold for $\$ 0.75$. If all the punch is sold, approximately how much profit will the seller make?

$$
\left.V=\frac{\frac{4}{3} \pi \pi^{3}}{2}=\frac{\frac{4}{3} \pi \cdot\left(5^{3}\right)}{2}=\frac{523.6 \mathrm{in}^{3}}{2}\right)
$$

5 bow $\left.\underset{\text { Am ont ot drink }}{\sim\left(304 \mathrm{~cm}^{3}\right.}\right) \times 5 \quad \frac{1309}{31.61}$

4. A spherical rock with diameter 2.02 cm is brought to your lab for identification. Its mass is measured on a scale to be 12.6 g . Based on the table below, find the most likely category for the rock.

Type	Density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$
Shale	0.34
Graphite	2.23
Talc	2.92
Pyrite	5.02

$$
\begin{aligned}
& V=\frac{4}{3} \pi r^{3} \\
& V=\frac{4}{3} \pi(1.01)^{3} \\
& V=4.32 \mathrm{~cm}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& D=\frac{M}{V} \\
& D=\frac{12.6 \mathrm{~g}}{4.32 \mathrm{~cm}^{3}} \Rightarrow 2.92 \mathrm{~g}_{\mathrm{km}}{ }^{3}
\end{aligned}
$$

5.
3. Find the missing data values in the table. Round each to the nearest whole number.

Country	Total Population	Area $\left(\mathrm{km}^{2}\right)$	Density (people $\left./ \mathrm{km}^{2}\right)$
Peru	$29,555,000$	$1,285,000$	23
Morocco	$34,000,000$	450,000	76
Laos	$6,800,000$	251,851	27

$$
\begin{aligned}
& D=\frac{\text { staff }}{\text { space }} \xlongequal{\substack{\text { in this. } \\
\text { pros.... }}} \frac{\text { peopic }}{\text { area }} \\
& \frac{M \text { oroclo }}{D}=\frac{m}{V} \\
& \text { Laos } \\
& D=34,002,002,27=\frac{6800,0.0}{V} \\
& 23=\frac{m}{1,2 r 5, \cdots} \\
& (23)(1,285,000)=m \\
& \text { 29,555,․00 people } \\
& D \approx 76 \mathrm{p} / \mathrm{km}^{2} \mathrm{~L} \quad 27 \cdot V=6,803,000 \mathrm{~L} V=\frac{6,800, \cdots 0}{27} \approx 251,852 \mathrm{~km}^{2}
\end{aligned}
$$

6. Find the exact surface area of the object in \#7.

$$
\begin{aligned}
& S A_{\text {HIS }}=\frac{1}{2} \cdot 4 \pi r^{2} \rightarrow 2 \pi(3)^{2} \rightarrow 18 \pi \\
& S A_{\text {urL }}=2 \pi r^{2}+2 \pi h=\pi(3)^{2}+2 \pi(3)(15) \\
& =9 \pi+90 \pi=99 \pi)
\end{aligned}
$$

7.

Find the volume of the object below, which consists of a cylinder capped by a hemisphere.

$$
\begin{array}{ll}
V_{C Y L}=\pi r^{2} h \\
V_{C Y L}=\pi \cdot 3^{2} \cdot 12 \\
V_{C Y L}=\frac{108 \pi \mathrm{~cm}^{3}}{1} & V_{\text {spier }}=\frac{4}{3} \pi r^{3} \rightarrow V_{\frac{1}{2} \text { sphere }}=\frac{\frac{4}{3} \pi r^{3}}{2} \\
&
\end{array}
$$

SRT-C8b

On a flight to Istanbul, a pilot hits severe weather and needs to make flight adjustments. The originally planned travel route was 1200 miles; however, the plane has veered off course by 18 degrees for 20 minutes while flying at a speed of 600 miles per hour as shown in the diagram below.
8. To the nearest mile, find the distance that the

9. Find the angle, x, that the plane must turn through to reach Istanbul.

SRT-C8b
On a flight to Istanbul, a pilot hits severe weather and needs to make flight adjustments. The originally planned travel route was 1200 miles; however, the plane has veered off course by 18 degrees for 20 minutes while flying at a speed of 600 miles per hour as shown in the diagram below.
8. To the nearest mile, find the distance that the
 plane now has to travel to reach Istanbul.
9. Find the angle, x, that the plage must turn through to reach Istanbul.

$$
\begin{aligned}
& \angle B i \text {-obtuse, so } \\
& 180-21.5^{\circ} \\
& B=\frac{158.5^{\circ}}{\longrightarrow X=21.5^{\circ}}
\end{aligned}
$$

