Good afternoon: no warm up, check hw answers now; we will randomize then start our lesson when the bell rings

1) $\frac{35 \pi}{3}$ in
2) $\frac{56 \pi}{3} \mathrm{yd}$
3) $\frac{55 \pi}{3} \mathrm{yd}$
4) $\frac{25 \pi}{3} \mathrm{~cm}$
5) $\frac{112 \pi}{3} y d d^{2}$
6) $\frac{392 \pi}{3} y d^{2}$
7) $\frac{297 \pi}{2} \mathrm{mi}^{2}$
8) $48 \pi y d^{2}$

Reminders:
assessment Thursday
retakes in DS

EOC

Starts next week!
Thursday, Part 1 (no calculator) 35 min
Monday, Part 250 min (M $4 / 30$ is an A-day)
Tuesday, Part 3 60min

Formulas Quiz Tuesday.
Have all of them memorized!
The EOC provides nothing!

Central Angle

Intercepted Arc
Inscribed Angle
https://www.geogebra.org/m/aFXfGSNH

Arcs Formed by Chords
b°

$$
x=\frac{a+b}{2}
$$

average of the 2 rs
ar s
ex

$$
\begin{aligned}
& \frac{168+70}{2} \\
& =\frac{238}{2} \\
& =-1199^{\circ}
\end{aligned}
$$

ex

$$
\begin{aligned}
& 83=\frac{110+b}{2} \\
& 2(83)=\left(\frac{110+b}{2}\right) z \\
& 166=110+b \\
& 56^{\circ}=b
\end{aligned}
$$

Chord Lengths

ex

$$
\begin{aligned}
21(x+6) & =27(2+x) \\
21 x+126 & =54+27 x \\
72 & =6 x \\
12 & =x
\end{aligned}
$$

Practice

Do \#2-14 (evens) for independent practice
Answers are taped to front door
get as much done as reasonable by $3: 43$ p

https://www.desmos.com/calculator/yakd45auzz
https://www.geogebra.org/m/bfgNqrHz

Find the diameter of the circle.

$$
\begin{aligned}
24^{2}+x^{2} & =26^{2} \\
576+x^{2} & =676 \\
x^{2} & =106 \\
x & =10 \rightarrow \text { radius/ }
\end{aligned}
$$

The Equation of a Circle

What is the precise definition of a circle?
Set of all points in the plane equidistant from a center

Let (h, k) be the center of some circle Let (x, y) be any other point
Distance formula:

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Pintake batmen ont? Radius!

$$
\begin{aligned}
r & =\sqrt{(x-h)^{2}+(y-k)^{2}} \\
r^{2} & =(x-h)^{2}+(y-k)^{2}
\end{aligned}
$$

EQUATION OF A CIRCLE

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

Centeri (h, k)
radius: r
(\rightarrow looks the Pr the The rem!)

What is the center and radius of this circle?

$$
\begin{aligned}
& (x-1)^{2}+(y+2)^{2}=16 \\
& (x-1)^{2}+(y--2)^{2}=4_{r}^{2} \\
& h \\
& \text { center: }(1,-2) \\
& \text { radius: } 4
\end{aligned}
$$

What is the center and radius of this circle?

$$
\begin{aligned}
& x^{2}+y^{2}=9 \\
& (x-0)^{2}+(y-0)^{2}=3^{2} \\
& \text { Center: }(0,0) \\
& \text { radius: } 3
\end{aligned}
$$

$x y$
Does $(3,4)$ lie on a circle centered at $(1,-2)$ with a radius of 5 ? Show the calculations that unify your answer.

$$
(x-1)^{2}+(y+2)^{2}=5^{2} 5 \operatorname{ten} 1
$$

$\frac{\text { step }}{\text { p log in }}$

$$
\begin{aligned}
& (3-1)^{2}+(4+2)^{2}=5^{2} \\
& (2)^{2}+(6)^{2}=25 \\
& 4+36=25 \\
& 40=25 \text { is this true?? }
\end{aligned}
$$

Write the equation of a circle where $(13,-3)$ and $(-1,11)$ are endpoints of a diameter.

Skpl: find center: (modpoint of dramets)

$$
\begin{aligned}
& \text { Midpt: }\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
& \left(\frac{13+-1}{2}, \frac{11+-3}{2}\right) \\
& \left(\frac{R}{2}, \frac{8}{2}\right) \rightarrow(6,4) \\
&
\end{aligned}
$$

$\frac{\text { stegz }}{\text { pugir }}$
eitter

$$
\begin{aligned}
& (13-6)^{2}+(-3-4)^{2}=r^{2} \\
& (x-6)^{2}+(y-4)^{2}=98 \\
& 7^{2}+(-7)^{2}=r^{2} \\
& 49+49=r^{2} \rightarrow 98=r^{2}
\end{aligned}
$$

HW

try the practice assessment \#1-12, check solutions mgeo.weebly.com assessment Thursday

DS Peer Tutoring
same seats as usual
What to work on:

- quiz each other on formulas: bit.ly/formulas18
- finish mini handout on arc length/sector area if needed
- do hw needed to retake volume/surface area assessment; retake skill(s)
- start the new practice assessment (ask me for help, we learn a lot of it in class today)

Please keep noise to a whisper as many are finishing/retaking/making up tests!

