3-3 Proving Lines Parallel (pp. 162-169)

EXAMPLES

Use the given information and theorems and postulates you have learned to show that $p \| q$.

- $\mathrm{m} \angle 2+\mathrm{m} \angle 3=180^{\circ}$

$\angle 2$ and $\angle 3$ are supplementary, so $p \| q$ by the Converse of the Same-Side Interior Angles Theorem.

■ $\angle 8 \cong \angle 6$
$\angle 8 \cong \angle 6$, so $p \| q$ by the Converse of the Corresponding Angles Postulate.

■ $\mathrm{m} \angle 1=(7 x-3)^{\circ}, \mathrm{m} \angle 5=5 x+15, x=9$
$\mathrm{m} \angle 1=60^{\circ}$, and $\mathrm{m} \angle 5=60^{\circ}$. So $\angle 1 \cong \angle 5$.
$p \| q$ by the Converse of the Alternate Exterior Angles Theorem.

3-4 Perpendicular Lines (pp. 172-178)

EXAMPLES

- Name the shortest segment from point X to $\overline{W Y}$. $\overline{X Z}$

- Write and solve an inequality for x.
$x+3>3$

$$
x>0 \quad \text { Subtract } 3 \text { from both sides. }
$$

■ Given: $m \perp p, \angle 1$ and $\angle 2$ are complementary. Prove: $\boldsymbol{p} \| q$

Proof:
It is given that $m \perp p . \angle 1$ and $\angle 2$ are complementary, so $\mathrm{m} \angle 1+\mathrm{m} \angle 2=90^{\circ}$. Thus $m \perp q$. Two lines perpendicular to the same line are parallel, so $p \| q$.

EXERCISES

Use the given information and theorems and postulates you have learned to show that $c \| d$.
18. $\mathrm{m} \angle 4=58^{\circ}, \mathrm{m} \angle 6=58^{\circ}$

19. $\mathrm{m} \angle 1=(23 x+38)^{\circ}, \mathrm{m} \angle 5=(17 x+56)^{\circ}, x=3$
20. $\mathrm{m} \angle 6=(12 x+6)^{\circ}, \mathrm{m} \angle 3=(21 x+9)^{\circ}, x=5$
21. $\mathrm{m} \angle 1=99^{\circ}, \mathrm{m} \angle 7=(13 x+8)^{\circ}, x=7$

EXERCISES

22. Name the shortest segment from point K to $\overline{L N}$.
23. Write and solve an inequality for x.

24. Given: $\overline{A D} \| \overline{B C}, \overline{A D} \perp \overline{A B}, \overline{D C} \perp \overline{B C}$

Prove: $\overline{A B} \| \overline{C D}$

