Warm ups: in NOTES not journal

F-C2

1. Find the values of a and b that would make $\mathrm{g}(\mathrm{x})$ continuous if $g(x)= \begin{cases}-2 x^{2}+3, & x<0 \\ a x+b, & 0 \leq x \leq 1 \\ 9 x & x>1\end{cases}$

$h(x)=(x-1)^{2}+4 \quad h(x)$ is continues on $[-1,4]$.

$$
\begin{aligned}
& h(-1)=(-1-1)^{2}+4=(-2)^{2}+4=8 \\
& h(4)=(3)^{2}+4=9+4=13
\end{aligned}
$$

By IV.5.) there exists, $c,-1<c<4$ s.t.

$$
h(c)=10^{\circ} \mathrm{b} / \mathrm{c} \quad h(-1)<h(c)<h(\$)
$$

